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■ Abstract Because the cost of large-eddy simulations (LES) of wall-bounded
flows that resolve all the important eddies depends strongly on the Reynolds num-
ber, methods to bypass the wall layer are required to perform high-Reynolds-number
LES at a reasonable cost. In this paper the available methodologies are reviewed, and
their ranges of applicability are highlighted. Various unresolved issues in wall-layer
modeling are presented, mostly in the context of engineering applications.

1. INTRODUCTION

The decrease in the cost of computer power over the last few years has increased
the impact of computational fluid dynamics. Numerical simulations of fluid flows,
which until a few decades ago were confined to the research environment, are now
successfully used for the development and design of engineering devices. Despite
the advances in computer speed and the algorithmic developments, however, the
numerical simulation of turbulent flows has not yet reached a mature stage: None
of the techniques currently available can be reliably applied to all problems of
scientific or technological interest.

The solution of the Reynolds-averaged Navier-Stokes equations (RANS) is
the tool that is most commonly applied, especially in engineering applications,
to the solution of turbulent flow problems. The RANS equations are obtained
by time- or ensemble-averaging the Navier-Stokes equations to yield a set of
transport equations for the averaged momentum. The effect of all the scales of
motion is modeled. Models for the RANS equations have been the object of much
study over the last 30 years, but no model has emerged that gives accurate results
in all flows without ad hoc adjustments of the model constants (see Wilcox 2001).
This may be due to the fact that the large, energy-carrying eddies are much affected
by the boundary conditions, and universal models that account for their dynamics
may be impossible to develop.
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In direct numerical simulations (DNS), on the other hand, all the scales of
motion are resolved accurately, and no modeling is used. DNS is the most accurate
numerical method available at present but is limited by its cost: Because all scales of
motion must be resolved, the number of grid points in each direction is proportional
to the ratio between the largest and the smallest eddy in the flow. This ratio is
proportional toRe3/4

L (whereReL is the Reynolds number based on an integral
scale of the flow). Thus, the number of points in three dimensions isNx NyNz ∝
Re9/4

L . Present computer resources limit the application of DNS to flows with
ReL = o(104), and theRe3/4

L dependence of the number of grid points makes it
unrealistic to expect that DNS can be used for high-Reengineering applications in
the near future. A recent review of DNS can be found in Moin & Mahesh (1998).

Large-eddy simulation is a technique intermediate between the solution of the
RANS equations and DNS. In large-eddy simulation (LES) the large, energy-
carrying eddies are computed, whereas only the small, subgrid scales of motion
are modeled. LES can be more accurate than the RANS approach because the
small scales tend to be more isotropic and homogeneous than the large ones, and
thus more amenable to universal modeling. Furthermore, the modeled subgrid
scale (SGS) stresses only contribute a small fraction of the total turbulent stresses.
Compared with DNS, LES does not suffer from the same strict resolution require-
ments of DNS. Recent reviews of LES can be found in the articles by Mason
(1994), Lesieur & Métais (1996), Piomelli (1999), and Meneveau & Katz (2000).

LES has received increased attention, in recent years, as a tool to study the
physics of turbulence in flows at higher Reynolds number, or in more complex ge-
ometries, than DNS. Its most successful applications, however, have still been for
moderate Reynolds numbers; examples include the flow inside an internal combus-
tion engine (Verzicco et al. 2000) or the sound emission from the trailing edge of
a hydrofoil atRec= 2× 106 (Wang & Moin 2000). In a wide range of flows in the
geophysical sciences (especially in meteorology and oceanography) and engineer-
ing (for instance, in ship hydrodynamics or in aircraft aerodynamics), however,
the Reynolds number is very high, of the order of tens or hundreds of millions.
The extension of LES that resolves the wall-layer structures (henceforth called
“resolved LES”) to such flows has been less successful owing to the increased cost
of the calculations when a solid boundary is present.

The first complete analysis of grid-resolution requirements for LES of turbulent
boundary layers can be found in the landmark paper by Chapman (1979). The flow
in a flat-plate boundary layer or plane channel is generally divided into an inner
layer in which the effects of viscosity are important and an outer one in which the
direct effects of the viscosity on the mean velocity are negligible. Chapman (1979)
examined the resolution requirements for inner and outer layers separately. In the
outer layer in which the important eddies scale like the boundary-layer thickness
or the channel half-heightδ, he obtained an estimate for the outer-layer resolution
by integrating Pao’s (1965) energy spectrum and showed that the number of points
in the wall-normal direction required to resolve a given fraction of the turbulent
kinetic energy is essentially independent ofRe. Assuming that the grid size in
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the streamwise and spanwise directions is a fixed fraction of the boundary-layer
thickness (which varies approximately likeRe0.2) his estimate results in a total
number of grid points proportional toRe0.4. Chapman estimated that only 2500
points are required to resolve a volumeδ

3
of the flow, whereδ is an average

boundary-layer thickness. In actual calculations a wide range of resolutions is
found: In calculations of plane channel flow, for instance, Schumann (1979) used
between 128 and 4096 points to resolve a volumeδ3 (hereδ is the channel half-
height), whereas Piomelli et al. (1989) used 1000 points.

The resolution of the inner layer is much more demanding: Its dynamics are
dominated by quasi-streamwise vortices (see the review by Robinson 1991) whose
dimensions are constant in wall units (i.e., when normalized with the kinematic
viscosityν and the friction velocityuτ = (τw/ρ)1/2, whereτw is the wall stress and
ρ the fluid density). If the inner-layer eddies are resolved, a constant grid spacing
in wall units must be used. In a boundary layer or channel flow, this requirement
results in streamwise and spanwise grid sizes1x+ ' 100,1z+ ' 20 (where wall
units are defined asx+i = xi uτ /ν). As the outer flow is approached, however, larger
grid spacings can be used. An optimal computation, therefore, would use nested
grids, with1x+ and1z+ increasing as one moves away from the wall. Under
these conditions, Chapman (1979) estimated that the number of points required to
resolve the viscous sublayer is

(Nx NyNz)vs ∝ C f Re2
L, (1)

which, assumingC f ∝ Re−0.2
L , gives

(Nx NyNz)vs ∝ Re1.8
L . (2)

In plane channel flow (an important test case for numerical simulations)
Chapman’s (1979) estimate for the cost of the outer layer needs to be modified.
The size of the largest eddies is determined by the channel height and is not a
function of the Reynolds number, whereas the cost of resolving the inner layer
is the same for channels and boundary layers. Grid-resolution estimates for more
complex flows cannot be derived a priori.

Using the estimates for boundary-layer flows, Figure 1 shows that atReL =
o(106), 99% of the points are used to resolve an inner layer whose thickness is
only 10% of the boundary layer. As a consequence, the number of points required
by LES if the inner layer is resolved exceeds present computational capabilities
already at moderate Reynolds numbers.

To estimate the cost of the calculation, one must consider that the equations of
motion must be integrated for a time proportional to the integral timescale of the
flow, with a time step limited by the need to resolve the life of the smallest eddy.
Reynolds (1990) estimates the cost by assuming that the operation count scales
like the number of points and that the time step be determined by the timescale of
the smallest eddy, which is inversely proportional to its length scale and, therefore,
to the grid size. This gives a number of time steps proportional to (Nx NyNz)1/3 and
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Figure 1 Number of grid points required to resolve a boundary layer. The “Present capa-
bilities” line represents calculations performed on a Pentium III 933MHz workstation with
1Gbyte of memory.

a total cost that is proportional to (Nx NyNz)4/3. This estimate gives a cost that scales
like Re0.5 for the outer layer, andRe2.4 for the inner one. This estimate disregards
the viscous stability conditions and is strictly valid only for calculations in which
at least the diffusion is treated implicitly, or neglected.

The only economical way to perform LES of high Reynolds-number attached
flows, therefore, is by computing the outer layer only. The grid size can, under these
conditions, be determined by the outer-flow eddies, and the cost of the calculation
becomes only weakly dependent on the Reynolds number. Because the grid is
too coarse to resolve the inner-layer structures, the effect of the wall layer must
be modeled. In particular, the momentum flux at the wall (i.e., the wall stress)
cannot be evaluated by discrete differentiation because the grid cannot resolve
either the sharp velocity gradients in the inner layer or the quasi-streamwise and
hairpin vortices that transfer momentum in this region of the flow. Therefore, some
phenomenological relation must be found to relate the wall stress to the outer-layer
flow.

This requirement spurred the development of models for the wall layer, also
known as approximate boundary-conditions. Wall-layer models were initially de-
veloped along parallel lines by geophysical scientists and engineers. The principal
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difference between the two fields is the presence of stratification, which is impor-
tant in meteorological flows but usually not in engineering. Stratification effects
are not treated in the present review, which concentrates on the engineering appli-
cations and development and only briefly outlines the models used by geophysical
scientists and meteorologists.

In the following, first the basic philosophy of wall-layer modeling is laid out, and
the assumptions and approximations common to most of the methods proposed
in the literature are discussed. Then, in Sections 2.1–3, a review of the various
approaches that have appeared in the literature is carried out. This is followed by
a discussion of other sources of errors that may appear in calculations in which
only the outer layer is computed. Some conclusions are drawn in Section 4.

2. WALL-LAYER MODELING

Most wall-layer models, explicitly or implicitly, consider the inner layer in a
Reynolds-averaged sense. If the grid is so coarse that it contains a large number
of eddies, as illustrated in Figure 2, only their average effect must be represented
by the wall-layer model. From one time step to the next, the grid cell adjacent
to the wall sees a large number of near-wall eddies that go through several life
cycles because their timescale is smaller than the time step, usually determined
by outer-flow numerical stability conditions. If the sample of near-wall eddies in
a grid cell is large enough, the inner layer can be assumed to be governed by
the Reynolds-averaged Navier-Stokes equations, rather than the filtered Navier-
Stokes equations solved in LES in the outer layer, and statistical arguments can be
used.

For this assumption to hold, the grid size must be very large: In plane channel
flow, the grid size must be of the order of 1500 wall units in the streamwise
direction and 700 in the spanwise direction. In this case the root-mean-square of
the difference between the instantaneous velocity profiles and the logarithmic law
would be less than 10%. As a consequence of this requirement, if the grid is too
fine (1x+ ' 100− 200,1z+ ' 50− 100), the statistical considerations on which
wall-layer models are based fail. Secondly, if the grid is coarse in the plane parallel
to the wall (1x+> 1000,1z+> 500), but the first point is fairly close to the wall
(say, aty+< 50), the grid cannot resolve the turbulent eddies present in this region
of the flow. This may result in aliasing errors that corrupt the velocity field. These
two issues may explain why wall-layer models tend to be more accurate at very
high Reynolds numbers (in which the grids are necessarily coarse in all directions)
than at low or moderate ones.

Validation of LES with wall models can be performed by comparison with ex-
periments or with resolved LES or DNS data. The latter has the advantage that
the boundary conditions can be matched exactly, and numerical and SGS model-
ing errors can be separated (to some extent) from those due to the approximate
boundary conditions. However, SGS and numerical errors in the resolved LES are
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usually largest in the near-wall layer; thus it is conceivable that calculations that
use “perfect” wall-layer models could give more accurate predictions than resolved
ones. Furthermore, the Reynolds number achievable by resolved LES and DNS,
as mentioned above, is quite low; this can affect the accuracy of the wall models.
High Reynolds-number experimental data is more easily available, but it is more
difficult to reproduce the experimental setup accurately, and differences between
calculations and experimental data are often due to differences in the boundary
conditions (see, for example, the discussion in Kaltenbach et al. 1999) as well as
to numerical and modeling errors.

The simplest approach to relate the wall stress to the outer velocity is to neglect
all terms in the streamwise momentum equation except the Reynolds-stress gradi-
ent. This implies that the acceleration and pressure gradient at the first grid point
are negligible and that the first grid point is far enough from the wall that viscous
effects are negligible. If, in addition, the shear stress is assumed to be constant
between the wall and the first point, one can derive a logarithmic velocity profile
in the inner layer either of the form

u+ = u

uτ
= 1

κ
log y+ + B, (3)

whereκ is the von Kármán constant, or

u+ = 1

κ
log

y

yo
, (4)

whereyo is the roughness height. This profile can be used to obtain the wall stress
given the velocity (obtained from the outer-flow calculation) at the first grid point.
The details of this approach are discussed in Section 2.1.

More recently, zonal approaches in which the RANS equations are solved in
the inner layer have been proposed and tested to remove those limiting assump-
tions. They are described in Section 2.2. Other methods are discussed in the final
subsection.

2.1. Equilibrium Laws

The limitations of LES, when applied to wall-bounded flows, were recognized in
the very early stages of the development of the technique: In the ground-breaking
LES of plane channels and annuli by Deardorff (1970) and Schumann (1975),
respectively, approximate wall-boundary conditions were introduced to model the
effect of the wall layer, which could not be resolved with the computer power
available at that time even at moderate Reynolds numbers. In the methodology
they proposed, information from the outer flow is used to determine the local wall
stress, which is then fed back to the outer LES in the form of the proper momentum
flux at the wall due to normal diffusion. The no-transpiration condition was used on
the wall-normal velocity component. Today this general approach is still in use in
various forms. The cost of these calculations is due to the outer-layer computation
only and is proportional toRe0.5 for spatially developing flows.
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Deardorff (1970), in his channel flow computations, restricted the second deriva-
tives of the velocity at the first off-wall grid point to be

∂2ū

∂y2
= − 1

κY2
+ ∂

2ū

∂z2
, (5)

∂2w̄

∂y2
= ∂2w̄

∂x2
, (6)

wherex indicates the streamwise direction,zthe spanwise direction, andy the wall-
normal direction;u, v, andw are the velocity components in the three coordinate
directions, respectively, and an overbar denotes a filtered (or large-scale) quantity.
Y is the location of the first point away from the wall. Equation 5 forces the plane-
averaged velocity profile to satisfy a logarithmic law in the mean at pointY. All
quantities in Equations 5 and 6 are normalized byuτ andv.

The results obtained by Deardorff (1970) for the turbulent channel flow at
infinite Reynolds number do not compare well with the experimental data of Laufer
(1950). The wall model, however, most likely has a small contribution to these
errors, which are mainly due to the resolution in the outer layer that was not
sufficient to resolve the large energy-carrying structures. A total of 6720 grid
nodes were used, which corresponds to approximately 400 points to resolve a
volumeδ3; this is six times less than the number of required points estimated by
Chapman (1979). When using an alternative set of boundary conditions proposed
in the same paper, which essentially implies that the logarithmic law (Equation 4)
holds locally, no difference was observed in the statistics.

Schumann (1975) used conditions that directly relate the shear stresses at the
wall, τxy,w andτyz,w, to the velocity in the core by

τxy,w(x, z) = 〈τw〉
〈ū(x,Y, z)〉 ū(x,Y, z), (7)

τyz,w(x, z) = ν w̄(x,Y, z)

Y
, (8)

where〈·〉 denotes averaging over a plane parallel to the solid wall. The mean
stress〈τw〉 is assigned a value equal to the given pressure gradient, or it can
be calculated iteratively using Newton iterations and requiring that the plane-
averaged velocity at the first grid point,〈ū(x,Y, z)〉, satisfy the logarithmic law
(Equation 4) at pointY. In phase with the adjacent local outer velocity, the resultant
streamwise component (τxy) of local wall-stress fluctuates around the mean value.
The spanwise component (τyz) is obtained by assuming a linear velocity profile
and a constant-eddy viscosity in the grid cell adjacent to the wall. The channel-
flow computations carried out in this study gave results in very good agreement
with the reference experimental data. Given the poor agreement with experiments
in Deardorff’s (1970) simulations (discussed above) this series of computations
was essentially the first to demonstrate the feasibility of LES using approximate
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wall-boundary conditions. In a later study Gr¨otzbach (1987) used a similar ap-
proach to assign the wall-heat flux in calculations of turbulent flows with heat
transfer and obtained favorable results.

Piomelli et al. (1989) applied conditions similar to Equations 7 and 8. However,
to take into account the inclination of the elongated structures in the near-wall
region, they required that the wall stress be correlated to the instantaneous velocity
some distance downstream of the point where the wall stress is required:

τxy,w = 〈τw〉
〈ū(x,Y, z)〉 ū(x +1s,Y, z), (9)

τyz,w = 〈τw〉
〈ū(x,Y, z)〉 w̄(x +1s,Y, z), (10)

where1s is a streamwise displacement; its optimum value can be obtained from
DNS or experimental data and is approximately1s = Y cot 8◦ for 30< Y+ < 50,
and1s = Y cot 13◦ for larger distances for the range of Reynolds numbers investi-
gated. The plane-averaged wall stress is obtained by iterative solution of Equation 3
as in the Schumann (1975) model above. These changes yielded improved results
with respect to the original formulation and were used by Balaras et al. (1995)
to study the flow in a plane channel for a range of Reynolds numbers in con-
junction with the dynamic SGS model, with results in excellent agreement with
experimental and DNS data.

All the above approximate boundary conditions are applicable to geometrically
simple flows in which the mean wall stress can be obtained from some form of
the law-of-the-wall. Extension to more complex configurations is possible only
if the mean wall stress can be specified. Wu & Squires (1998) performed LES
of a three-dimensional boundary layer over a swept bump using an approach
similar to that of Schumann (1975): Equations 7 and 8 were used, with the mean
wall stress obtained from a separate RANS calculation. The mean velocity in
these equations was computed by performing spanwise averages at each time
step during the calculation. Their results are in fairly good agreement with the
reference experimental data. This type of approach could be useful in some cases in
which RANS simulations or prior experimental studies could provide a reasonable
estimate of the mean wall stress, but extension to complex flows is impractical
because it relies on the accuracy of the RANS approach.

Most of the models described above imply that the logarithmic law-of-the-wall
holds in the mean: Deardorff (1970) enforced this through the second derivative
of the velocity (Equation 5); Schumann (1975) and Piomelli et al. (1989) did so
by calculating the mean wall stress from the iterative solution of Equation 3 for
uτ , given ū at the first grid point off the wall. Alternatively, the logarithmic law
can be enforced locally and instantaneously, and the wall stress can be computed
by assuming that it is aligned with the outer horizontal velocity, as suggested by
Deardorff (1970). This method was extensively tested in a study by Mason &
Callen (1986) and is based on local equilibrium of the near-wall region; its validity
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strongly depends on the size of the averaging volume (the grid cell), which must
contain (as mentioned earlier) a significant sample of inner-layer eddies. In a similar
manner Werner & Wengle (1993) fit the local horizontal velocity to a power law
matched to a linear profile near the wall to compute the local stress. The results
in both cases are not very different from the ones with the other models discussed
above.

Although a discussion of the important issues in geophysical calculations is
beyond the scope of this paper, it should be mentioned that most wall-layer models
used in meteorology are of this type. Moeng (1984), for instance, also computes
uτ by imposing an instantaneous logarithmic law at the first grid point, with a
correction for the wall heat flux. A similar relationship is used to evaluate the
temperature gradient at the wall (see, for instance, Zhang et al. 1996).

Hoffmann & Benocci (1995) derived an analytical expression for the local stress
by integrating analytically the boundary-layer equations coupled with an algebraic
turbulence model:

v̄Y = − d

dx

∫ Y

0
ū dy (11)

τxy,w =
[
νtot
∂ū

∂y

]
Y

− ūYv̄Y + d

dx

∫ Y

0
ū2 dy

−Y
d Pe

dx
− d

dt

∫ Y

0
ū dy, (12)

whereνtot is the total eddy viscosity (sum of molecular and SGS) anddPe/dx is the
external pressure gradient. Hoffman & Benocci (1995) argued that the sum of the
two advective terms (the second and third on the right-hand side of Equation 12)
can be neglected (they point out that it is not legitimate to neglect only one of them,
only their difference). They approximated the unsteady term using a discretized
time derivative and order-of-magnitude arguments and modeled the viscous diffu-
sion usingκy as the length scale in a mixing-length model. Then, the calculation
of the wall stress required only the velocityūY. The results for a channel flow and a
rotating channel flow are in good agreement with resolved LES and experimental
studies.

The same approach was used by Wang (1999) to calculate the flow over the
trailing edge of an airfoil. He examined two cases, one in which only the vis-
cous and turbulent diffusion were used in the equation and one in which the
pressure gradient was included. The unsteady term was always neglected. The
approximate–boundary condition calculation was in good agreement with the re-
solved one (Wang & Moin 2000) in the zero or favorable pressure-gradient region
(see Figure 3), but the flow in the adverse pressure-gradient region was not pre-
dicted accurately. Immediately downstream of the sharp peak in the skin-friction
coefficient in Figure 3, the wall model does not respond correctly to the transi-
tion from the favorable to the adverse pressure gradient. The frequency spectra of
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Figure 3 Distribution of the skin-friction coefficient near the trailing edge on the top surface
of the airfoil. Each set of curves is shifted by two units in the vertical direction. The calculations
that use the TLM approach are discussed in Section 2.2. Data from Wang (2000).
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wall-pressure fluctuations agree well with those obtained from the resolved calcu-
lation, except in the adverse pressure-gradient and separated regions. Wang (1999)
also computed the far-field noise generated by the sharp trailing edge and found that
the predictions of the calculations with approximate boundary conditions did not
match the resolved ones in the frequency range associated with scales generated in
the separation region, whereas at other frequencies the agreement was acceptable.

2.2. Zonal Approaches

Zonal approaches are based on the explicit solution of a different set of equations
in the inner layer. There are two approaches: In one, known as the Two-Layer
Model (TLM), two separate grids are used. In the other, which is based on the
Detached Eddy Simulation method proposed by Spalart et al. (1997), a single grid
is used, and only the turbulence model changes.

The TLM was proposed by Balaras & Benocci (1994) and was extensively
tested in a follow-up paper by Balaras et al. (1996). Whereas the filtered Navier-
Stokes equations are solved in the core of the flow, in the wall layer a simplified set
of equations is solved in a grid that is refined in the wall-normal direction only and
is embedded in the coarser LES mesh (see Figure 4). The basic assumption behind
this technique is that the interaction between the near-wall region and the outer
region is weak. The TLM uses the boundary-layer equations in the inner layer:

∂ūi

∂t
+ ∂

∂xi
(ūnūi ) = − ∂ p̄

∂xi
+ ∂

∂xn

[
(ν + νt )

∂ūi

∂xn

]
, (13)

wheren indicates the normal direction andi spans 1,2 or 1,3 depending on whether
the wall plane is thex − y or x − z plane. The unknown normal velocityun is
computed by imposing mass conservation in the inner layer. The inner-layer flow
is calculated by integrating Equation 13 using the no-slip condition at the wall,
and the velocity at the first grid point is obtained from the outer-flow LES as a

Figure 4 Inner-and outer-layer grids for the two-layer model.
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“freestream” condition. The wall-stress components obtained from the integration
of Equation 13 in the inner layer are then used as boundary conditions for the
outer-flow calculation.

The cost of this method is marginally higher than the cost of calculations that
use equilibrium boundary-conditions because the inner layer requires a small per-
centage of the total cost of the calculation. Two one-dimensional problems are
solved, and no Poisson-equation inversion is required to obtain the pressure.

In Balaras & Benocci (1994) and Balaras et al. (1996) an algebraic eddy vis-
cosity model was used to parameterize all scales of motion in the wall layer:

νt = (κy)2D(y)
∣∣S̄∣∣ , (14)

wherey is the distance from the wall,
∣∣S̄∣∣ is the magnitude of the resolved strain-

rate tensor, andD(y) is a damping function that assures the correct behavior ofνt

at the wall:

D(y) = 1− exp[−(y+/A+)3], (15)

whereA+ = 25.
Balaras et al. (1996) applied the TLM to channel flow for Reynolds numbers

Reτ = uτ δ/ν between 200 and 2000, obtaining results in good agreement with
resolved LES, DNS, and experiments. The results were also in good agreement
with those obtained using the equilibrium-based boundary condition (Equations 9
and 10). Significant improvements over the equilibrium approach were obtained
when the TLM was applied to the flow in a square duct and to the flow in a rotating
channel. In the square duct the flow in the corners, where a logarithmic law is
not valid owing to the secondary flow, was predicted accurately. In the case of
the rotating channel the model based on the logarithmic law failed entirely owing
to numerical instability introduced by the logarithmic boundary condition. The
friction velocity is shown for various rotation numbersRob = 2Äδ/Ub (whereUb

is the average velocity in the channel,δ the channel half-height andÄ the rotation
rate) in Figure 5. The TLM predictions were in good agreement with the resolved
DNS and experiments, even on the stable side of the channel in which significant
deviations from the logarithmic profile are observed owing to the tendency toward
relaminarization of the flow. The differences observed on the stable side between
all the numerical datasets and the experiments are probably due to differences in
the flow configurations. In particular, the flow in the experiments may not have
been fully developed owing to the short entry length, and the low aspect ratio of
the channel may have generated a streamwise pressure gradient that enhanced the
tendency of the flow toward relaminarization.

The two-layer model was also the subject of several studies carried out at the
Center for Turbulence Research and summarized by Cabot & Moin (1999). In
plane channel flow, Cabot (1995) found little difference with the results obtained
using the logarithmic law, consistent with the finding of Balaras et al. (1996).
Cabot also observed a transition layer in which the mean velocity profile shifts
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Figure 5 Friction velocity in rotating channel flow.•, Experiments (Johnston et al. 1972);
---, —·—, best fit to experimental data (Johnston et al. 1972);+, DNS (Kristoffersen &
Andersson 1993);¥, DNS (Lamballais et al. 1998);¤ resolved LES (Lamballais et al. 1998);
×, resolved LES (Piomelli & Liu 1995);M, LES with wall models (Balaras et al. 1996).

from the imposed logarithmic value at the interface (which corresponds to an
interceptB = 5.5) to a profile with a lower intercept (B ' 5) that better fits the
experimental data at high Reynolds number (Figure 6). This results in decreased
mass flux for a given pressure gradient, but the error is quite small: The maximum
velocity is underestimated by approximately 3%.

Cabot (1996) and Diurno et al. (2001) applied the TLM to the calculation of
a backward-facing step for a range of Reynolds numbers. All calculations used
second-order accurate staggered schemes for the discretization of the equations
of motion and localized versions of the dynamic eddy viscosity model. A variety
of inner-layer treatments was used. Cabot (1996) used the configuration shown in
Figure 7a to compute the flow in a backward-facing step atReh = 28,000 (based
on step height and inlet velocity) and with a 4:5 expansion ratio. His configuration
and grid were identical to those used by Akselvoll & Moin (1995) for a resolved
LES of this flow; downstream of the step, the first 10 grid points in the wall-normal
direction were removed, and the TLM was applied. Thus, in the region downstream
of the step, 146× 97× 96 mesh points were used, only 10% fewer than the resolved
calculation. This setup, which does not achieve the computational savings that can
be obtained using the TLM, was chosen in order to compare the accuracy of the
approach with the resolved calculations eliminating all sources of error apart from
the approximate boundary conditions.

The reattachment point obtained by Cabot (1996) was in good agreement
with the resolved LE data, although a stronger backflow (compared with the
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Figure 6 Mean streamwise velocity in wall units for LES with the two-layer model on a
323-point mesh atReτ = 20,000. The modified dynamic model is discussed in Section 3.
Data from Cabot & Moin (1999).

Figure 7 Sketch of the simulation domains used for the backward-facing step calculations.
The dotted area indicates the computational domain, the cross-hashed regions the areas in
which the wall-layer models were applied. Drawings not to scale.
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Figure 8 Skin friction coefficient downstream of the step.Reh = 28,000.

experimental data) was observed in the recirculating region. This result was con-
sistent with the resolved LES results (Figure 8). No corner eddy was observed. The
mean velocity profiles also agreed well with the resolved calculation. Cabot (1996)
found that the streamwise pressure term played an important role in the boundary-
layer equation for the TLM. He compared the standard mixing-length approach
[in which the argument of the exponential in the damping function (Equation 15)
was squared, rather than raised to the third power as in Balaras et al. 1996] with a
“dynamic” model in which the von K´armán constantκ was modified by forcing the
inner-layer eddy viscosity to match (in a least-squares sense) the Reynolds stress
predicted in the inner layer with that obtained in the outer flow from the LES. This
yielded a lower (by more than a factor of 2) value of the inner-layer viscosity. This
modification resulted in a small improvement of the skin-friction prediction in the
recirculating region, but otherwise the calculation appeared fairly insensitive to
the turbulence model in the inner layer.

Diurno et al. (2001) computed the same flow but used a different configuration,
as sketched in Figure 7b. They moved the inflow to the corner where they assigned
the velocity by using planes of data computed in a separate calculation. They
also applied the wall-layer model on all solid surfaces and used 160× 80× 32
grid points [one third of the grid points used by Cabot (1996)]; the mesh was
stretched near the corner to resolve better the shear layer. They used the standard
TLM formulation (Equations 13–15) but also performed calculations in which the
eddy viscosity in the inner layer was obtained using the Spalart-Allmaras (1994)
turbulence model. The use of a transport equation for the eddy viscosity required the
specification of an additional boundary condition. Several implementations were
tested, and the one that was found more robust, accurate, and less computationally
demanding was to set the inner-layer eddy viscosity equal to the outer-layer SGS
eddy viscosity. This boundary condition is justified only if the velocity and its first
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derivative are smooth at the interface, which in all computations was true at least
in the mean.

Diurno et al. (2001) obtained quite good agreement with the experiments
(Figure 8), both with the Spalart-Allmaras (1994) model and with the standard
algebraic eddy-viscosity model in the inner layer. They found that the flow field
was quite insensitive to the inner-layer treatment, consistent with the results by
Cabot (1996). They did observe a secondary recirculating region and a corner
eddy that was, however, excessively elongated in the wall-normal direction. Sev-
eral factors can explain the difference between these results and those obtained
by Cabot (1996) using a similar model and numerical scheme. First is the dif-
ference in the configuration: Akselvoll & Moin (1995) and Cabot (1996) had a
development region upstream of the step in which the grid resolution may not have
been sufficient to resolve the boundary layer properly. The wall stress predicted
by the LES throughout this region is, in fact, 30% lower than in the experiments.
Diurno et al. (2001), on the other hand, had no development region but assigned a
boundary layer obtained from a separate calculation that matched the experimental
wall stress. Because the state of the boundary layer at the separation point is very
important in determining the flow dynamics, this difference can have significant
effects. Second, the mesh used by Diurno et al. (2001) near the corner was finer in
the streamwise and wall-normal directions compared to that employed by Cabot
(1996). Notice that, although Cabot (1996) employed 96 points in this direction, he
resolved the wall layer on the upper wall, which was modeled in the computations
by Diurno et al. (2001).

In this flow the state of the separating shear layer determines to a very large
extent the flow in the separated region. The TLM responds well to outer-flow
perturbations; on the other hand, in cases in which the perturbation propagates
from the wall, the TLM performance is much less accurate. In Figure 9 the contours
of the wall stress in a calculation of the flow atReh= 5,100 illustrate the highly
irregular shape of the reattachment line, and the secondary separation bubble, as
evidenced by the reversal of the sign ofτw. The velocity vectors in the separated
region (left plot) show an attached flow moving toward the corner and the separation
due to the corner eddy. Those in the right-hand plot show the attached flow in the
recovery region. The fact that the inner layer always sees an attached flow (which
may be moving in any direction) explains why the boundary-layer equations are
successful in modeling a massively separated flow. If the recirculation bubble were
entirely contained within the inner layer and had to be parameterized by the RANS
model, the results would probably be less accurate.

Wang (2000) followed his previous work (Wang 1999, described in
Section 2.1) by applying the TLM model for the study of the airfoil trailing-
edge flow. The results did not improve when the standard inner-layer treatment
was used. In fact, the skin-friction coefficient was too high even in the attached
region of the flow (Figure 3). He then modified the inner-layer model by using
a dynamic constant in the mixing-length expression (Equation 14). The constant
was set by requiring that, at the interface,νt = νT , whereνT is the outer-flow SGS
eddy viscosity andνt is the inner-layer one. This resulted in decreased values of the
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Figure 9 Contours of the instantaneous wall-stress downstream of the step and instanta-
neous velocity vectors in thexy−plane at two locations. The scaling of the vectors on the
left-hand-side figure is magnified by a factor of three compared with the right-hand-side. The
interface is shown by a thick line and the contour interval is1τw = 2× 10−4. Dotted contours
are negative.Reh = 5,100. From Diurno et al. (2001).

inner-layer eddy viscosity (lower by a factor of approximately 3) and in improved
agreement with the resolved LES (Figure 3), especially in the adverse pressure-
gradient and separated regions. The velocity spectra and the far-field noise were
also in better agreement with the resolved case.

Another approach to wall-layer modeling is the Detached Eddy Simulation
(DES), introduced by Spalart et al. (1997) as a method to compute massively
separated flows. DES is a hybrid approach that combines the solution of the RANS
equations in the attached boundary layers with LES in the separated regions in
which the detached eddies are important. Recent reviews of the DES formulation
and achievements can be found in Spalart (2000) and Strelets (2001). Although
DES is not a zonal approach, as it uses a single grid, the turbulence model used
separates a RANS region from an LES one, effectively creating two zones, one
in which the RANS model has control over the solution and another in which the
resolved eddies govern the flow. Notice that, because no zonal interface exists,
the velocity field is smooth everywhere. Its original formulation used the Spalart-
Allmaras (1994) model, a one-equation model in which a transport equation for the
eddy viscosity is solved. By modifying the model length scale to account for the
fine resolution in the LES regions, the production of eddy viscosity is decreased
far from solid surfaces. When production and destruction are equal, the model
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behavior is similar to that of a Smagorinsky (1963) eddy-viscosity model (Strelets
2001). Because the grid size in the plane parallel to the walls scales with the outer-
flow eddies, although the first grid point must be aty+ ' 1 to ensure accurate
calculation of the wall stress by the finite-difference method, the cost of this method
compared to a resolved calculation is a weaker function of the Reynolds number.
Nikitin et al. (2000) estimate the cost to be proportional toReτ , which corresponds
roughly toRe0.9

L .
In the standard DES approach the entire boundary layer is modeled by RANS.

Nikitin et al. (2000), however, used DES as a wall-layer model in calculations of
plane channel flow. They performed several calculations with different numerical
schemes and grids, exploring a wide range of Reynolds numbers (180≤Reτ ≤
80,000). The calculations showed some promising results: Turbulence in the outer
layer was sustained even though the flow in the inner layer was smooth owing to the
large-eddy viscosity predicted by the Spalart-Allmaras (1994) model. The velocity
profiles, shown in Figure 10, have the correct behavior in the inner layer, which
is governed by the RANS model, tuned to reproduce the linear and logarithmic

Figure 10 Mean velocity profiles in plane channel flow. DES-based wall-layer model
(Nikitin et al. 2000). Each profile is shifted by 6 units in the vertical direction for clarity,
and a bullet shows the interface between the RANS and the LES regions.
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profiles in flows of this kind. As the flow transitions into the LES region, however,
an unphysical “DES buffer layer” is formed in which the velocity gradient is too
high. This buffer layer becomes what appears to be an extended wake region,
but is instead a logarithmic layer with a high intercept and, in some cases, an
incorrect slope. The high intercept is particularly clear in the fine calculation at
Reτ = 20,000, in which it extends roughly between 3000< y+< 15,000. When
the resolution in the outer LES region was insufficient (1x = 1z = 0.1δ), the
slope of this spurious logarithmic region was also incorrect. Only at the lowest
Reynolds number, in which the grid was fine enough to perform a coarse DNS,
were accurate results obtained in the outer layer. These errors were reflected in
the skin-friction coefficient, which was underpredicted by approximately 15% in
most of the calculations. Although the outer-layer resolution could affect the slope
of the logarithmic layer in the LES region, the high intercept must be attributed
to other causes because refining the grid in theReτ = 20,000 calculation did not
result in significant improvements.

Because the inner layer was smooth, unphysical, nearly one-dimensional, wall
streaks were present in the RANS region, shown in Figure 11, and shorter-scale
outer-layer eddies were progressively formed as one moved away from the wall.
Baggett (1998) argues that the presence of these artificial streaks causes a de-
correlation betweenu andv fluctuations that must be compensated by a higher
velocity gradient to balance streamwise momentum, which shifts the intercept of
the LES logarithmic region to a higher value. The mechanism of generation of
these artificial streaks is not fully understood. In particular, it is not clear whether
they are generated by the nonlinear response of the inner-layer model to outer-flow
perturbations or whether the inner layer is forcing the outer flow to have incorrect
length scales, thereby causing this transition layer to exist.

In models based on the logarithmic law different results can be observed.
Figure 12 shows contours of the vorticity in a channel-flow calculation carried
out in a similar configuration (in terms of domain size, grid in the streamwise and
spanwise directions) to that used in the DES case. The outer-layer eddies in this
case leave a much stronger footprint on the inner layer, which has the same length
scales as the outer layer.

2.3. Other Methods

In the methodologies discussed in Sections 2.1 and 2.2 the local wall stress required
to impose boundary conditions to the outer LES is computed either from some
form of law-of-the-wall or by solving numerically a set of simplified equations.
Alternative methods have also been explored over the past years. Bagwell et al.
(1993) developed an approach that attempts to incorporate more knowledge of
wall-layer coherent structures into wall models. They used the linear stochastic
estimate (LSE) approach (Adrian 1979) to obtain the local wall-shear stress given
the outer flow. LSE provides the best linear estimate (in the least-squares sense)
of the velocity field corresponding to a given “event” (the velocity, strain rate,
or pressure at one or more points in the field). Bagwell et al. (1993) assigned an
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Figure 13 Mean velocity and streamwise turbulence intensity profiles with mean-flow
control. Data from Nicoud et al. (2001).

event-field consisting of all velocities on a single horizontal plane adjacent to the
wall and obtained results in very good agreement with the DNS data. Even the rms
turbulence intensities were predicted accurately down toy+ = 15. The method,
however, requires prior knowledge in the form of the two-point spatial correlation
tensor, which was taken in this case from DNS data. Although scaling arguments
may be invoked to rescale known correlations at different Reynolds numbers (see
for example Naguib & Wark 1992), the range of applicability of this approach
remains limited.

Nicoud et al. (2001) used suboptimal control theory to supply a wall stress that
forced the outer LES to the desired mean velocity profile. This method yielded
improved agreement (Figure 13) with the logarithmic law (which was the target
profile) but its cost was excessive (approximately 20 times that for the uncon-
trolled LES). The turbulence intensities were still not predicted accurately in a
transition layer near the wall. This indicates that even the specification of the “ex-
act” wall stress may not be sufficient to match the second-order statistics at the
inner-outer layer interface, and additional information on the structure of turbu-
lence in this region may be required. To develop a practical model, they coupled the
suboptimal-control calculation to the LSE approach. Using the suboptimal-control
strategy, they generated a table of outer-flow velocity/wall-stress correlations that,
when used as approximate boundary conditions, reproduced the results of the
suboptimal-control calculation at a much lower cost. An advantage over similar
databases that can be generated from experiments, DNS, or well-resolved LES
is that in this case numerical and SGS errors are taken explicitly into account.
The LSE model, however, is very sensitive to the numerical scheme employed
and to the grid resolution. Baggett et al. (2000) found that the accuracy of the
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LSE model deteriorates significantly when the grid is modified or when a differ-
ent numerical scheme is used than the one employed in the suboptimal-control
calculation.

3. OTHER SOURCES OF ERROR

Near the wall, in the outer layer, the dominant eddies become comparable to
the grid size, violating the assumptions on which most SGS stress models are
based. Furthermore, the accurate evaluation of the strain-rate tensor, which is
required by most eddy-viscosity SGS models, may be inaccurate. Finally, the
explicit filtering operations commonly used to perform a dynamic evaluation of the
model coefficients (Germano et al. 1991) are ill defined near the wall. In addition,
numerical errors on the coarse (relative to the size of the dominant eddies) mesh
near the wall may be of the same order of magnitude as the divergence of the SGS
stress tensor itself.

Cabot et al. (1999) used the dynamic eddy-viscosity model in coarse LES of
plane channel flow and compared the standard, dynamic eddy-viscosity model
with one in which the dynamic coefficient at the first grid point is obtained from
an extrapolation from the flow interior, rather than calculated using local-flow
properties. This calculation (shown in Figure 6) yielded a significantly larger eddy
viscosity in the outer layer and better agreement with the logarithmic law than the
standard approach.

Other approaches that yield improved agreement with experiments and the-
ory on very coarse grids include using a stochastic backscatter model (Mason
& Thomson 1992), a two-part model with a contribution that forces directly the
mean flow (Schumann 1975, Sullivan et al. 1994), and a scale-dependent, dy-
namic eddy-viscosity model (Port´e-Agel et al. 2000). In this model, a power-law
dependence of the dynamic-model coefficient on the filter size is assumed to ac-
count for the fact that the dynamic procedure assumes that the explicit filter lies
in the inertial region of the spectrum, an assumption usually invalid near the wall
in coarse calculations. The optimal-control approach proposed by Nicoud et al.
(2001) (discussed above) also tries to correct for modeling and numerical errors
explicitly.

4. CONCLUSIONS

Several wall-layer models that have been developed or applied in recent years are
described. The state-of-the-art in this area can be summarized by the following
points:

1. Simple models work fairly well in simple flows (especially the flows for
which they were designed and in which they were calibrated). For instance,
models based on the logarithmic law give a fairly accurate prediction of
the mean skin-friction coefficient and outer-velocity profile in equilibrium
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flows. The Reynolds stresses are also in reasonable agreement with the data
outside of a transition layer, a few (two or three) grid-cells thick, in which
wall-modeling errors are felt.

2. In more complex configurations in which the flow is driven by the outer
layer, equilibrium laws may fail, but zonal models give reasonably accurate
predictions. Examples of such flows are the backward-facing step and the
airfoil trailing edge. In the first configuration, the mean velocity and skin-
friction coefficient were predicted quite accurately, and the transition layer
was nearly nonexistent, even in the separated region. In the second one, all
the velocity statistics were in good agreement with resolved LES, except in
the adverse pressure-gradient region in which the inner-layer model predicts
a higher wall stress, whereas the outer-layer velocity profile is not as full
as in the resolved calculation. This outer-layer discrepancy might be due to
SGS modeling errors.

3. No extensive tests of wall-layer models in complex configurations exist. In
nonequilibrium flows in which the inner layer is strongly perturbed, such
as, for instance, a three-dimensional shear-driven boundary layer, wall-layer
modeling is inaccurate (G.V. Diurno, personal communication). Wall-layer
models are not very effective (in the formulations presently in use) at trans-
ferring information to the outer layer and tend to be more accurate when the
inner/outer-layer interaction is one-way, with the outer layer supplying the
forcing.

What level of accuracy can one expect from a “good” wall-layer model? In the
authors’ opinion, the mean skin-friction coefficient must be predicted accurately,
perhaps within 5% of resolved calculations. One should also expect the first-
and second-order statistics in the outer layer to be as accurate as in a resolved
LES. In plane-channel calculations the turbulent kinetic energy budgets were also
found to be in good agreement with resolved LES and DNS data (Balaras et al.
1995), but it is not known whether this objective is achievable in more complex
flows.

Present models do not satisfy these requirements. In most cases a transition
layer exists (see, for example, Figures 10 and 13) in which the velocity profile
switches from the logarithmic law enforced by the inner-layer model to one that
the outer-layer satisfies. The transition region is strongly dependent on the type of
interaction between inner and outer layer forced by the model used. For instance,
in the DES calculations of Nikitin et al. (2000) the intercept of the logarithmic law
was too high, whereas in calculations that used the logarithmic law the intercept
could be either too high (Piomelli et al. 1989) or too low (Nicoud et al. 2001).

Even in simple flows, there is no a priori reason to expect that the inner-layer
logarithmic law enforced, implicitly or explicitly, by most models will match the
one established by the resolved calculation in the outer flow. The matching occurs
only if both the inner- and outer-layer treatments are accurate (numerical and
modeling errors are small) and if their interaction does not introduce spurious
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unphysical phenomena. The complex interactions between inner and outer layer,
shown in Figures 11 and 12, are affected by many factors: The inner-layer model
is only one of them; the outer-flow SGS model, the grid resolution, and the aspect
ratio are also important (F. Nicoud, J.S. Bagget, P. Moin, & W.H. Cabot, submitted
report).

Several important issues that remain unanswered require attention in order to
develop accurate models that work well in a variety of configurations. Progress
is being made in SGS modeling on very coarse meshes, an area that has, histor-
ically, been of more interest to meteorologists than to engineers. The latter tend
to perform very highly resolved calculations in which the integral scale is much
larger than the grid or filter size. Better understanding of the interaction between
the resolved dynamics in the outer layer and the simplified ones in the inner one
is required. Performing well-resolved LES at fairly high Reynolds numbers for
model validation is very important. In fact, the use of low Reynolds-number data
for this purpose may actually hamper the development of wall-layer models be-
cause it forces the calculations that use approximate boundary conditions to place
the first grid point in the buffer region or in the lower reaches of the logarithmic
layer and that use grids that are only a few hundred wall units in the streamwise and
spanwise directions, which is in direct contradiction with the statistical assumption
that underlies wall-layer modeling.

The renewed interest in the development of methodologies for the extension
of LES to high Reynolds-number flows has so far raised more questions than
it has answered. At present, reliable predictions cannot be expected except for
fairly simple configurations. Based on the progress in modeling and numerical
methodologies for LES over the last decade, however, one may hope that the next
five years or so may bring substantial advancement in this area as well.
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Figure 2 Sketch illustrating the wall-layer modeling philosophy. (a) Inner layer
resolved. (b) Inner layer modeled.
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Figure 11 Spanwise vorticity fluctuations in plane-chanel flow. DES wall-layer
model,Reτ = 20,000, fine calculation.y+ = 650 is the interface between LES and
RANS regions (K.D. Squires, personal communication).
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Figure 12 Spanwise vorticity fluctuations in plane-channel flow. Logarithmic-law
wall-layer model (9–10)Reτ = 20,000. The first velocity point is at y+ = 500.


